

Artículo

El efecto del metronidazol frente a un simbiótico en el curso clínico y la microbiota intestinal central en perros con diarrea aguda

Helene Stübing ^{1,*}, Jan S. Suchodolski ², Andrea Reisinger ¹, Melanie Werner ³, Katrin Hartmann ¹ Stefan Unterer ³y Kathrin Busch ¹

- Clínica de Pequeños Animales, Centro de Medicina Veterinaria Clínica, Universidad Ludwig-Maximilian de Múnich, 80539 Múnich, Alemania; hartmann@lmu.de (K.H.); kathy.busch@gmx.de (K.B.)
- Laboratorio Gastrointestinal, Facultad de Medicina Veterinaria y Ciencias Biomédicas, Universidad de Texas A&M,
 - College Station, TX 77840, Estados Unidos; jsuchodolski@cvm.tamu.edu
- Clínica de Medicina Interna de Pequeños Animales, Facultad de Veterinaria, Universidad de Zúrich, 8057 Zúrich, Suiza; stefan.unterer@uzh.ch (S.U.)
- * Correspondencia: he.stuebing@gmx.de

Resumen simple: Se discute la utilidad del metronidazol para el tratamiento de la diarrea aguda en perros. El papel de *Clostridium perfringens* y *Escherichia coli* como enteropatógenos en la diarrea aguda no complicada (EA) en perros es controvertido, mientras que algunas bacterias beneficiosas, como *Clostridium hiranonis*, son miembros importantes de la microbiota intestinal normal. En este estudio, se compararon los efectos del metronidazol y un simbiótico sobre el curso clínico y la microbiota intestinal central en perros con diarrea aguda. No se observó ningún beneficio significativo del metronidazol en cuanto a la evolución clínica. El metronidazol no tuvo ningún efecto sobre la *concentración de C. perfringens*, pero resultó en un aumento significativo de la concentración de *E. coli*, un aumento del índice de disbiosis y una reducción en la *concentración de C. hiranonis*. En conclusión, a diferencia del tratamiento simbiótico, el tratamiento con metronidazol tiene un impacto negativo en el microbioma sin afectar los resultados clínicos.

Cita: Stübing, H.; Suchodolski, J.S.; Reisinger, A.; Werner, M.; Hartmann, K.; Unterer, S.; Busch, K. El efecto del metronidazol frente a un simbiótico en el curso clínico y la microbiota intestinal central en perros con diarrea aguda. *Vet. Sci.* 2024, 11, 197. https://doi.org/10.3390/vetsci11050197

Editor académico: Karl Pedersen

Recibido: 1 de marzo de 2024 Revisado: 23 de abril de 2024 Aceptado: 24 de abril de 2024 Publicado: 29 Abril 2024

Derechos de autor: © 2024 de los autores. Licenciatario MDPI, Basilea, Suiza. Este artículo es un artículo de acceso abierto distribuido bajo los términos y condiciones de la licencia Creative Commons Attribution (CC BY) (https://

creativecommons.org/licenses/by/

Resumen: La utilidad de los antibióticos en perros con diarrea aguda (EA) es controvertida. Tampoco está claro qué efecto tiene el metronidazol sobre posibles enteropatógenos Clostridium perfringens y Escherichia coli. Por lo tanto, el objetivo de este estudio fue evaluar el efecto metronidazol frente a un simbiótico en el curso clínico y las bacterias intestinales centrales de perros con EA. Veintisiete perros con EA se inscribieron en este ensayo clínico prospectivo, aleatorizado y ciego y se trataron con metronidazol (METg) o un simbiótico (SYNg; E. faecium DSM 10663;

NCIMB 10415/4b170). El índice de Severidad de la Diarrea Aguda Canina (CADS) se registró diariamente durante once días. Las bacterias se cuantificaron mediante qPCR. Los datos se analizaron mediante modelos mixtos con medidas repetidas. Se observó una mayor concentración de E. coli en el grupo METg frente al grupo SYNg en el día 6 (p < 0,0001) y en el día 30 (p = 0,01). El metronidazol no tuvo ningún efecto sobre C. perfringens. C. hiranonis fue significativamente menor en el grupo METg que en el grupo SYNg en los días 6 y 30 (p < 0,0001; p = 0,0015). No se observaron diferencias significativas en el índice CADS, la consistencia fecal o la frecuencia de defecación entre los grupos de tratamiento (excepto para el índice CADS en un solo día). En conclusión, el metronidazol tiene un impacto negativo en el microbioma sin afectar los resultados clínicos. Por lo tanto, los simbióticos podrían ser una opción de tratamiento preferida para los perros con EA.

Palabras clave: antibiótico; *C. perfringens*; *C. hiranonis*; *E. coli*; *E. faecium*; probiótico; microbioma intestinal; mejoría clínica; canino

1. Introducción

La diarrea aguda sin complicaciones en perros (EA) es un motivo común de consulta veterinaria [1,2]. La EA se puede diferenciar del síndrome de diarrea hemorrágica aguda (AHDS), ya que la deshidratación y la translocación bacteriana pueden conducir a un curso complicado [3].

Vet. Sci. 2024, 11, 197. https://doi.org/10.3390/vetsci11050197

https://www.mdpi.com/journal/vetsci

Vet. Sci. 2024, 11, 197 2 of 13

Por lo general, la mayoría de los casos de EA son leves y los perros generalmente se pueden tratar como pacientes ambulatorios, sin requerir tratamiento específico [4-7]. La EA ocurre repentinamente y persiste por menos de 7 días.

Por lo general, se desconocen las causas de la enfermedad de Alzheimer. La indiscreción dietética, la dieta inadecuada, los cambios bruscos en la dieta, la intolerancia e hipersensibilidad alimentaria, el estrés y los medicamentos que irritan el tracto gastrointestinal (por ejemplo, antiinflamatorios no esteroideos) se encuentran entre los factores de riesgo no infecciosos [8-10]. Las infecciones gastrointestinales transitorias autolimitadas son otra causa potencial de EA en perros. En este contexto, *Clostridium perfringens* (*C. perfringens*) y *Escherichia coli* (*E. coli*) se mencionan con frecuencia como posibles enteropatógenos. Sin embargo, las infecciones bacterianas son generalmente raras en perros y estudios previos han demostrado que *C. perfringens* y *E. coli* también se pueden detectar en perros sanos [11,12]. Sin embargo, la identificación de estas bacterias en muestras fecales de perros con EA se utiliza a menudo como indicación para el tratamiento con antibióticos [10], que se inicia en el 49 al 71% de los perros que presentan EA [13-15].

El agente antimicrobiano prescrito con mayor frecuencia en perros con EA es el metronidazol, que representó el 47% de todas las prescripciones de antimicrobianos en un estudio realizado en el Reino Unido [13]. El metronidazol es un fármaco 5-nitroimidazol y se utiliza en el tratamiento de una variedad de enfermedades infecciosas, especialmente para infecciones por bacterias anaeróbicas y protozoos [3,16,17]. El metronidazol es un fármaco bactericida dependiente de la concentración y está ampliamente distribuido por todo el cuerpo [3]. La activación de este profármaco incluye una reducción del grupo nitro dentro de la célula diana. Las reductasas de microorganismos anaerobios o microaerofílicos explican la selectividad del metronidazol. La interacción de los metabolitos generados con el ADN conduce a la muerte celular de bacterias y protozoos [17].

En la lista de medicamentos esenciales de la Asociación Mundial de Veterinarios de Pequeños Animales (WSAVA, por sus siglas en inglés), el metronidazol figura como un antibiótico que satisface la atención primaria de la salud y el bienestar de perros y gatos y se recomienda para el tratamiento de infecciones entéricas bacterianas y protozoarias seleccionadas [18]. Sin embargo, existe una prescripción rutinaria de metronidazol en la EA. La eficacia del metronidazol en el tratamiento de la EA es muy controvertida, especialmente teniendo en cuenta el desarrollo de cepas bacterianas resistentes y los posibles efectos negativos sobre el microbioma intestinal (por ejemplo, disbiosis grave debido a su espectro anaeróbico) [19-22]. En detalle, se observó una reducción significativa en la concentración de Clostridium hiranonis (C. hiranonis) después de ya se ha demostrado la administración de metronidazol [19]. C. Hiranonis tiene se ha reportado que es beneficioso en perros debido a su conversión de ácidos biliares

se ha reportado que es beneficioso en perros debido a su conversión de ácidos biliares primarios a secundarios, lo cual es importante en la regulación de *C. difficile* y *C. perfringens* tanto en perros como en humanos [23,24].

Los simbióticos tienen propiedades probióticas y prebióticas. La Organización Mundial de la Salud (OMS) los definió como cepas vivas de microorganismos estrictamente seleccionados que, cuando se administran en cantidades adecuadas, confieren un beneficio saludable al huésped. Los prebióticos son ingredientes alimentarios no digeribles que afectan beneficiosamente al huésped al estimular selectivamente el crecimiento y/o la actividad de una o un número limitado de bacterias para mejorar la salud del huésped [25,26]. El propósito de los simbióticos es superar algunas posibles dificultades en la supervivencia de los probióticos en el tracto gastrointestinal. Una combinación de ambos componentes en un solo producto debería asegurar un efecto superior en comparación con la actividad del probiótico o prebiótico solo [27,28]. El propósito del tratamiento simbiótico en el tratamiento de la EA es apoyar las características autolimitadas a través de la modulación positiva del microbioma intestinal; Por lo tanto, los simbióticos son alternativas útiles para el tratamiento con antibióticos. Sin embargo, los resultados de diferentes estudios que compararon el metronidazol con probióticos/simbióticos y un placebo son inconsistentes. Un ensayo clínico sugirió que el tratamiento con metronidazol, en comparación con un placebo, puede acortar la duración de la EA en perros (media de 2,1 frente a 3,6 días) [6], mientras que otros ensayos clínicos no lograron mostrar una mejoría clínica más rápida en respuesta al metronidazol en comparación con el tratamiento con probióticos, placebos o nutracéuticos [4,7].

Vet. Sci. **2024**, 11, 197 3 of 13

Por lo tanto, el objetivo de este estudio fue evaluar el impacto del metronidazol en comparación con el de la administración de un simbiótico sobre el curso clínico y la abundancia

Vet. Sci. 2024, 11, 197 4 of 13

de especies bacterianas específicas, como *C. perfringens, E. coli* y *C. hiranonis*, y del microbioma intestinal en general en perros con EA.

2. Materiales y métodos

Este estudio fue diseñado como un ensayo clínico prospectivo, ciego y aleatorizado y fue aprobado por el comité ético del Centro de Medicina Veterinaria Clínica de la Universidad Ludwig-Maximilians, Múnich (referencia 205-06-03-2020). Los perros fueron reclutados en dos clínicas de animales pequeños en Múnich, Alemania, entre octubre de 2020 y enero de 2023.

Veintisiete perros con diarrea aguda < 5 días de duración, una puntuación de consistencia fecal de al menos 2 en el índice de gravedad de la diarrea aguda canina (índice CADS; Tabla 1, [29]), se incluyó un peso corporal entre 5 y 50 kg, y una edad mínima de 9 meses.

Tabla 1. Sistema de puntuación para el índice de Severidad de la Diarrea Aguda Canina (índice CADS, máximo 15 puntos). Los niveles de gravedad fueron los siguientes: no significativos (0-3); leve (4-5); moderado (6-8); y grave (≥ 9) .

	Puntos				
Parameters	0	1	>5	3	
Activity	normal	mildly decreased	moderately decreased	severely decreased	
Appetite	normal	mildly decreased	moderately decreased	severely decreased	
Vomiting (times/day)	0	1	2-3	>3	
Fecal consistency	normal	moist, shaped	pasty	watery diarrhea	
Defecation frequency (times/day)	1	2-3	4–5	>5	

Se excluyeron los perros con antecedentes de signos gastrointestinales crónicos o recurrentes o tratados con antibióticos o probióticos dentro de los 30 días o medicamentos antiinflamatorios dentro de los 7 días anteriores a la presentación. También se excluyeron los perros que cumplían alguno de los siguientes criterios que indicaban una forma complicada de enfermedad gastrointestinal aguda: diarrea hemorrágica, signos de inflamación sistémica o sepsis (Tabla 2), enfermedad grave (p. ej., estado mental deprimido, dolor abdominal moderado a intenso) o deshidratación significativa que provocara hospitalización (Tabla 2).

Tabla 2. Signos clínicos de inflamación sistémica, sepsis o deshidratación.

Parámetro	Rango de referencia	
Temperatura rectal	<37,0 y >39,0 ° ^C [<98.6 ° ^F y >102.2 ° ^F]	
Polígrafo	>140/min	
Hematocrito	>58%	
CMB	$<5 \times 109/L_0 > 20 \times 109/L$	
Neutrófilos en bandas	>1.5 × 109/L	

La información relevante sobre la historia clínica, como episodios diarreicos pasados, otras enfermedades o enfermedades crónicas, la rutina de vacunación y desparasitación, la descripción exacta del episodio actual de EA, los signos clínicos adicionales (p. ej., vómitos), la administración previa de medicamentos, la ingesta de material extraño o nieve, la presencia de factores relacionados con el estrés y la dieta o los cambios en la dieta, se recopiló de manera estandarizada.

La base de datos mínima para el trabajo de diagnóstico incluyó un examen fecal de endoparásitos mediante flotación fecal y pruebas de antígenos para Giardia (SNAP Giardia Test, Idexx GmbH, Kornwestheim, Alemania), y se realizó un recuento completo de células sanguíneas (ProCyte Dx, Idexx GmbH, Kornwestheim, Alemania).

Los perros de ambos grupos recibieron el mismo tratamiento estandarizado, incluyendo maropitant (Prevomax, Dechra Veterinary Products Deutschland GmbH, Aulendorf, Alemania) como antiemético (1 mg/kg administrado una vez por vía subcutánea) y metamizol (Novaminsulfon, Ratiopharm, Ulm, Alemania) como analgésico (30 mg/kg por os cada 8 h durante 2 días), y fueron alimentados con la misma dieta gastrointestinal alta en

Vet. Sci. **2024**, 11, 197 5 of 13

fibra (Gastrointestinal Biome dry, Nutrición para mascotas de Hill's

Vet. Sci. 2024, 11, 197 6 of 13

GmbH, Hamburgo, Alemania) durante 7 días. Se instruyó a los propietarios que alimentaran solo la dieta prescrita y que no alimentaran golosinas ni sobras de la mesa durante el período de estudio.

Además, en función de su aleatorización (lista creada por un rastreador de investigación en línea: www.graphpad.com/quickcalcs/randomize1.cfm, consultado el 1 de septiembre de 2020), los perros del grupo de tratamiento con metronidazol (METg) recibieron metronidazol (Metrobactin, Dechra Veterinary Products Deutschland GmbH, Aulendorf, Alemania) por vía oral a dosis de 10 a 20 mg/kg de peso corporal cada 12 h durante 7 días, y los perros del grupo de tratamiento simbiótico (SYNg) recibieron un agente simbiótico (NutraPro®K9, E. faecium DSM 10,663 NCIMB 10415/4b1707, dextrosa, manano-oligosacáridos, levadura de cerveza, inulina, minerales e hígado de ave hidrolizado, NutraPet Systems Deutschland GmbH, Schlaitdorf, Alemania) por sistema a 108 UFC/kg de peso corporal cada 12 h durante 7 días. Para el cegamiento, se utilizaron cápsulas idénticas que contenían metronidazol o el simbiótico, y cada perro recibió el mismo número de cápsulas de acuerdo con su grupo de peso predefinido.

En el momento de la presentación, el veterinario tratante evaluó la actividad clínica de la enfermedad utilizando información de la historia clínica y el examen físico del paciente (índice CADS día 0). Durante los 10 días siguientes (del día 1 al día 10), el propietario evaluó la puntuación de actividad de la enfermedad en casa. El índice CADS incluye 5 parámetros (actividad, apetito, tiempos de vómitos/día, consistencia fecal, frecuencia de defecación veces/día) con 0 a 3 puntos para cada parámetro, y para un valor máximo posible de 15 puntos. Los niveles de gravedad del índice CADS se definieron como no sænificativos (0-3), leves (4-5), moderados (6-8) o graves (9). Para obtener datos más objetivos sobre el parámetro consistencia fecal (CF) del índice CADS, se utilizó la Tabla de Puntuación Fecal de Purina (PFS; https://freedomservicedogs.org/ wpcontent/uploads/2022/04/Purina-Fecal-Scoring-Chart.pdf, consultado el 1 de septiembre de 2020), mientras que PFS 2-3 = índice CADS FC 0; SSP 4-5 = índice CADS FC 1; PFS 6 = CADS

índice FC 2; y PFS 7 = índice CADS FC 3. Para los perros que defecaron más de una vez al día, la puntuación de la FC se calculó como el promedio de todas las defecaciones de ese día.

Se recogieron muestras fecales naturales de cada perro el día 0 antes de iniciar el tratamiento y el día 6 y el día 30. Las alícuotas para el análisis se congelaron a 80 °C a las pocas horas de la recolección (<6 h) y posteriormente se enviaron como lotes en hielo seco al Laboratorio Gastrointestinal de la Universidad de Texas A&M.

El Índice de Disbiosis (ID) es un modelo matemático utilizado para cuantificar la disbiosis intestinal en muestras fecales de perros. Para calcular la ID, se realizó un ensayo de qPCR individual para 7 taxones bacterianos (*Faecalibacterium* spp., *Turicibacter* spp., *Streptococcus* spp., *E. coli, Blautia* spp., *Fusobacterium* spp. y *C. hiranonis*) y el total de bacterias como se describió anteriormente [30]. El DI es un valor numérico único, y previamente se había establecido un intervalo de referencia de 9,1 a 9,3 basado en 116 perros sanos. Un DI < 0 se definió como la ausencia de cambios en la diversidad general. Si los grupos bacterianos individuales estaban fuera del intervalo de referencia, esto sugería cambios menores. Los valores entre 0 y 2 se definieron como una

aumento de la DI, lo que sugiere un cambio de leve a moderado en la diversidad ≹eneral. Un DI 2 se definió como significativamente aumentado, consistente con un cambio importante en la diversidad general [5]. Se ha demostrado que esta clasificación predice con precisión los cambios en el microbioma, según lo evaluado por secuenciación de escopeta de ADN [31]. Otro estudio demostró que cuando la abundancia de

C. hiranonis (en log10) es >4.5, esencialmente todos los ácidos biliares primarios se convierten en secundarios ácidos biliares [32].

Las abundancias del *gen 16S del ARNr* de C. perfringens, *el gen de la enterotoxina* de C. perfringens y el gen *NetF de C. perfringens* en las heces se analizaron mediante ensayos de qPCR como se describió anteriormente [5,11]. Los intervalos de referencia para perros sanos se habían establecido previamente a partir de los datos de 120 perros sanos. El intervalo de referencia de *C. perfringens* se definió de 1,1 a 6,5, y el de *enterotoxina de C. perfringens* de 1,8 a 5,1. Las *toxinas* NetF y Clostridium difficile *de C. perfringens* se consideraron negativas. Los resultados de la qPCR se expresaron como la cantidad logarítmica

Vet. Sci. **2024**, 11, 197 7 of 13

de ADN (fg) para cada grupo bacteriano por cada 10 ng de ADN total aislado.

El análisis de potencia indicó que era necesario incluir en el estudio al menos 8 perros por grupo para detectar una diferencia de 2 puntos en el índice CADS entre tratamientos (DE estimada de 1,5, potencia de 80% y p < 0,05). Los análisis estadísticos se realizaron mediante

Pad Prism (GraphPad Prism c9.0, GraphPad Software, San Diego, CA, EE. UU.). La normalidad de los datos se evaluó mediante la prueba de Anderson-Darling.

Las diferencias entre los grupos en cuanto a sexo, edad, peso corporal y raza se evaluaron con la prueba U de Mann-Whitney. La evolución del índice CADS y los de las variables individuales, la DI y las bacterias individuales se analizaron mediante análisis de efectos mixtos con comparaciones múltiples para la comparación entre el METg y el SYNg.

(El nivel de significancia elegido para determinar la significación estadística fue p < 0.05).

3. Resultados

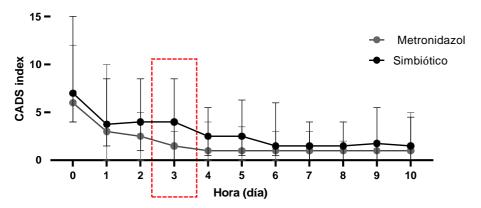
3.1. Población de estudio

Un total de 27 perros fueron incluidos en el estudio (METg, n=15; SYNg, n=12). No hubo diferencias significativas entre los grupos al inicio del estudio en cuanto a edad, sexo, peso corporal o distribución por razas (Tablas 3 y 4).

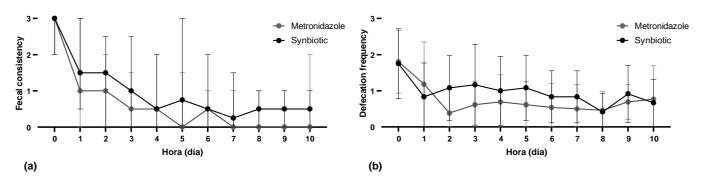
Tabla 3. Distribución por sexo y raza al inicio del estudio en perros con EA; abreviaturas: METg: grupo de tratamiento con metronidazol; SYNg: grupo de tratamiento simbiótico.

	METg (n = 15)	SYNg (n = 12)	p Valoi	
Sexo	7 hombres, 8 mujeres	4 hombres, 8 mujeres	0.69	
D.	Mestizos (3), Miniatura			
	Pastor australiano (1),	Mestizos (5), Vizsla (2),		
	Schnauzer gigante (1), Perro	Golden Retriever (1),		
	maltés (1),	Chihuahua (1),	0.27	
Razas	Caniche (1), Pug (2), Americano	(),	0.27	
	Bulldog (1), Bichón Frisé (1),	Shi Tzu (1), Yorkshire		
	Border Collie (1), Labrador (1), Terrier (1)			
	Yorkshire Terrier (1), Bulldog			
	Francés (1)			

Tabla 4. Peso corporal y distribución por edad al inicio del estudio en perros con EA; abreviaturas: METg: grupo de tratamiento con metronidazol; SYNg: grupo de tratamiento simbiótico.


	METg (n = 15) SYNg (n = 12)			
-	Mediana (rango)	Mediana	— p Valor	
	(rango)			
Peso corporal (kg)	12.7 (5-36.3)	17.2 (5-35.5)	0.31	
Edad (años)	4.7 (1-13)	5.2 (2-12)	0.81	

Los perros presentaron una mediana de duración de la diarrea de 1 día (rango METg 1-5 días; Rango de SYNg de 1 a 4,5 días). Trece (48%) perros experimentaron vómitos además de diarrea. Diecinueve (73%) de los propietarios informaron que su perro podría haber ingerido una sustancia inadecuada o que habían observado una ingesta. Una experiencia estresante en los últimos días antes de la presentación que condujo a la EA fue reportada por 5 propietarios (19%). Veintiséis perros fueron alimentados con una dieta comercial, y un perro fue alimentado con una dieta vegana comercial. Se entregaron golosinas y sobras de la mesa a 17 perros (63%). Once (41%) perros fueron desparasitados regularmente, y la última desparasitación ocurrió hace una mediana de 3,2 meses (rango de 1 a 24 meses). Dieciséis (59%) perros fueron desparasitados irregularmente. Ningún perro ha sufrido otra enfermedad aguda en los últimos 30 días. En 10 (37%) perros, se documentó una afección crónica no gastrointestinal. En los últimos 30 días se administró medicación a 8 (27%) perros, y 3 (11%) perros recibían medicación a largo plazo. Diecinueve (70%) propietarios informaron varios episodios previos de diarrea, y la mediana de intervalo con el último episodio de EA fue de 4,2 meses (rango 2-8).


3.2. Eficacia del tratamiento

Ninguno de los perros de ninguno de los grupos requirió un tratamiento médico

La mediana del índice CADS en el día 0 fue de 6,5 (rango 4-15). No se observaron diferencias estadísticamente significativas en el índice CADS entre el METg y el SYNg en ninguno de los días excepto el día 3 (p = 0.02; Figura 1). En el día 3, más perros en el SYNg tenían menos apetito y actividad. No hubo diferencias significativas en ningún día durante el período de estudio entre el METg y el SYNg en cuanto a los parámetros específicos de diarrea FC (Figura 2a) y frecuencia de defecación (DF) (Figura 2b).

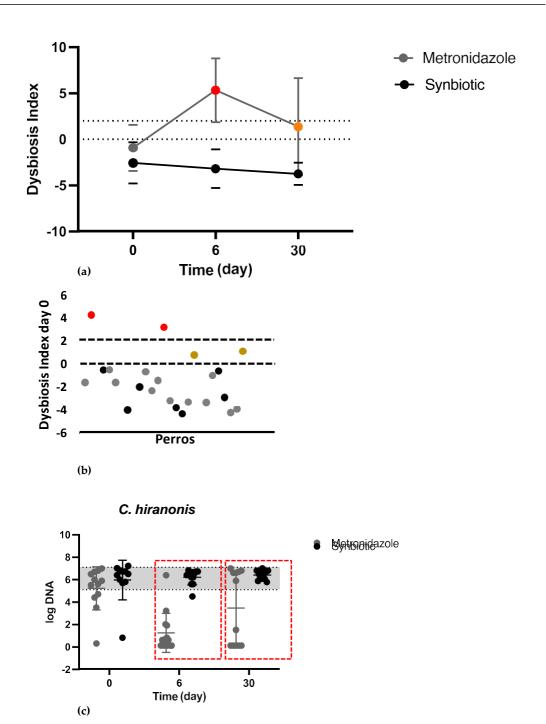

Figura 1. Evaluación clínica de los signos clínicos según el índice de Severidad de la Diarrea Aguda Canina (CADS). Los índices incluyeron las variables actividad, apetito, vómitos (horas/día), consistencia fecal y frecuencia de defecación (horas/día). Cada variable se puntúa de 0 a 3, y la suma de las puntuaciones da como resultado una puntuación acumulada total. Los puntos muestran la mediana y las barras de error muestran el rango. No se observaron diferencias estadísticamente significativas entre el METg y el SYNg en ninguno de los días, excepto en el día 3 (recuadro rojo; p = 0.02).

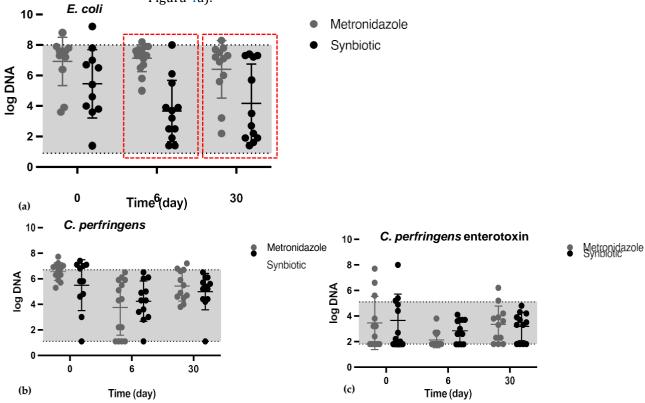
Figura 2. (a) Evaluación clínica del parámetro consistencia fecal (CF) del índice CADS mediante la Tabla de Puntuación Fecal (PFS) de Purina. El índice CADS (FC) se puntuó de 0 a 3, con SSP 2-3= índice CADS FC 0; SSP 4-5= índice CADS FC 1; SSP 6= índice CADS FC 2; y PFS 7= índice CADS FC 3. Los puntos muestran la mediana y las barras de error muestran el rango. No se observaron diferencias significativas en el índice CADS FC entre los grupos de metronidazol y tratamiento simbiótico. b) Evaluación clínica del parámetro frecuencia de defecación (FD) según el índice CADS. Las puntuaciones oscilaron entre 0 y 3, con 0=1; 1=2-3; 2=4-5; y 3=>5 veces/día. Los puntos muestran las medias y las barras de error muestran los DE. No se observaron diferencias significativas en el índice CADS DF entre los grupos de metronidazol y tratamiento simbiótico.

3.3. Análisis del microbioma

No hubo diferencias significativas en la DI fecal en el día 0 entre los dos grupos. La mayoría de los perros tenían una DI normal (DI < 0) o cambios menores (DI < 0) el día de la presentación (Figura 3b). Hubo una diferencia significativa en el DI entre los dos grupos en día 6 (media de METg de 5,3 ± 2,63); media de SYNg de 3,1 (2,02); p < 0,0001) y el día 30 (media de METg de 1,3 (4,69); media de SYNg de 3,7 (1,15); p = 0,0004; Figura 3a). En la última grabación El 33% de los perros en el METg todavía tenían un aumento de la DI, mientras que todos los perros en el SYNg tenían una DI < 0, y el 58% de estos perros mostraron cambios menores en el día 30.

Figura 3. a) El DI a lo largo del tiempo. Los puntos muestran las medias y las barras de error muestran los SD (a,c). Un DI < 0 indica un microbioma normal ((b) puntos negros) o cambios menores ((b) puntos grises; cuando al menos un taxón bacteriano está fuera del intervalo de referencia), un DI de 0 a 2 indica cambios leves a moderados ((a,b) puntos marrones), mientras que un DI \geq 2 indica cambios significativos ((a,b) puntos rojos). Hubo una diferencia significativa en el DI en el día 6 (p < 0,0001) y en el día 30 (p = 0,0004) entre los dos grupos.

 (\mathbf{b}) El DI en el día 0. La mayoría de los perros tenían una DI normal o cambios menores (puntos grises) el día de la


presentación. c) Concentración de C. hiranonis a lo largo del tiempo. El eje Y representa las heces logarítmicas de ADN/g; El área gris muestra el intervalo de referencia de las cepas bacterianas individuales. Aunque no hubo diferencia en el día 0, se observó una diferencia significativa en la abundancia de C. hiranonis en el día 6 y el día 30 (recuadros rojos; p < 0.0001; p = 0.0015).

No se observaron diferencias significativas en *la abundancia de C. hiranonis* en el día 0 entre los dos grupos. En el día 0, el 78% de todos los perros tenían *C. hiranonis* dentro del rango de referencia. Hubo una diferencia significativa en la abundancia *de C. hiranonis* entre el tratamiento con metronidazol

y el grupo de tratamiento simbiótico en el día 6 y el día 30 (día 6, media de METg 1,6 log ADN/g heces (DE 1,68); SYNg media 6,2 log ADN/g heces (DE 0,64), p < 0,0001; día 30, METg media 3,4 log ADN/g heces (DE 3,05); SYNg media 6,4 log DNA/g heces (DE 0,37), p = 0,0015). *C. hiranonis* fue de <4,5 log DNA/g de heces en el día 6 en el 93% de los perros y en el día 30 en el 42% de los perros en el METg (Figura 3c).

Tres taxones bacterianos, cuantificados por PCR, *Turicibacter* spp., *Bifidobacterium* spp. y *Streptococcus* spp., no se vieron afectados significativamente por el metronidazol en comparación con el tratamiento sinbiótico, mientras que una disminución significativa en las abundancias de *Faecalibacterium* spp. (p = 0.0015), *Fusobacterium* spp. (p = 0.0048) y *Blautia* spp. (p = 0.002) debido al metronidazol durante el estudio.

En el 9% de todos los perros, la concentración de $E.\ coli$ aumentó (>8 log DNA/g de heces) en el día 0. No se observaron diferencias estadísticamente significativas en la abundancia de $E.\ coli$ en el día 0 entre los dos grupos. Hubo diferencia significativa entre el METg y el SYNg en cuanto a la concentración de $E.\ coli$ en el día 6 (media de METg 7,1 log DNA/g heces (0,84); SYNg media 3,6 log DNA/g heces (1,92); p 0,0001) y el día 30 (METg media 6,4 log DNA/g heces (1,78); SYNg media 4,1 log DNA/g heces (2,46); p = 0,01; Figura 4a).

Figura 4. Abundancia de *cepas de E. coli* (a), *C. perfringens* (b) y *C. perfringens* que codifican enterotoxina (c) en los días 0, 6 y 30. Los puntos muestran la media, las barras de error muestran la DE, el eje Y representa las heces logarítmicas de ADN/g y el área gris muestra el intervalo de referencia para las bacterias individuales. (a) Hubo una diferencia significativa en la concentración de *E. coli* entre el METg y el SYNg en el día 6 ($p \le 0.0001$) y el día 30 (recuadros rojos; p = 0.01). (b,c) No hubo diferencias significativas en la abundancia de

C. perfringens o cepas de C. perfringens que codifican enterotoxinas en cualquiera de los días registrados.

El día de la inclusión, la concentración de *C. perfringens* se incrementó en el 35% de todos los perros por encima del intervalo de referencia (>6,5 log DNA/g de heces). No hubo diferencias estadísticamente significativas entre los grupos en cuanto a la abundancia de *C. perfringens* cuantificada por qPCR en los días 0, 6 o 30. La concentración de *C. perfringens* volvió al intervalo de referencia (<6,5 log DNA/g de heces) en todos los perros del estudio el día 6 y en el 78% de los perros el día 30 (Figura 4b), independientemente del tratamiento.

En el día 0, en el 25% de los perros de ambos grupos, se incrementó la abundancia de *cepas de C. perfringens* que codifican enterotoxina (>5,1 log DNA/g de heces). No hubo diferencias estadísticamente significativas en la abundancia de cepas de *C. perfringens* que codifican enterotoxinas entre los dos grupos en los días 0, 6 y 30 (Figura 4c).

En el día 0, 3 perros (13%) dieron positivo para la abundancia de *cepas de C. perfringens* que codifican la toxina *NetF*. Ningún perro fue positivo para *Clostridioides difficile* (*C. difficile*) el día 0.

4. Discusión

Los resultados de este ensayo clínico prospectivo y ciego mostraron que, en comparación con un simbiótico, el metronidazol no tuvo ningún efecto sobre la concentración de C. perfringens, pero resultó en un aumento significativo de la concentración de E. coli, un aumento del índice de disbiosis y una reducción en la concentración de C. hiranonis. No se observaron diferencias significativas en cuanto a la mejoría clínica. Por lo tanto, el metronidazol tuvo un efecto negativo en el microbioma central sin afectar los resultados clínicos.

Una encuesta reciente entre veterinarios mostró que el manejo clínico de la diarrea aguda iopática no es consistente con las recomendaciones basadas en la evidencia [13,15]. Esta proporción subraya la necesidad continua de recomendaciones basadas en la evidencia y promueve la difusión de nueva información [15]. El presente estudio reveló que para los perros con EA, el uso rutinario de metronidazol no mejora el curso clínico, pero tiene un impacto negativo en el microbioma intestinal, mientras que los simbióticos tienen resultados clínicos similares pero ayudan en la recuperación del microbioma.

Aunque el índice CADS fue menor en el grupo de metronidazol en el día 3, no hubo diferencias significativas en los parámetros específicos de la diarrea FC y DF en este día. En el resto de los días, no se encontraron diferencias significativas entre los grupos de tratamiento. Por lo tanto, los resultados confirmaron los hallazgos de estudios previos de que no existe una diferencia relevante entre el metronidazol y el tratamiento simbiótico en términos de mejoría clínica en perros con EA [4,7,22].

Además del curso clínico, los resultados del presente estudio mostraron que la EA no conduce a alteraciones importantes en la microbiota intestinal central, lo que tampoco se observó en otros estudios que evaluaron la diarrea aguda, incluida la AHDS, en perros [5,33]. El leve aumento de la DI podría estar relacionado con pequeñas alteraciones en la microbiota central y el aumento de C. perfringens y E. coli. Por el contrario, se pueden observar alteraciones importantes en la microbiota intestinal central y una falta de C. hiranonis en un subconjunto de perros con enteropatías crónicas (CE) [30,34]. C. hiranonis desempeña un papel importante en el mantenimiento de un microbioma intestinal normal debido a su capacidad para convertir los ácidos biliares primarios en ácidos biliares secundarios a través de la 7- α -deshidroxilación [14,19]. Un estudio demostró que cuando la abundancia de

C. hiranonis (en log10) es >4.5, esencialmente todos los ácidos biliares primarios se convierten en secundarios

ácidos biliares [32]. Se cree que los ácidos biliares secundarios protegen contra el crecimiento de varios patógenos, incluido C. difficile [32]. La disbiosis intestinal está relacionada con la EC y, a menudo, con una menor abundancia de C. hiranonis [30,35]. La presencia de C. difficile, a su vez, está fuertemente relacionada con la disminución de C. hiranonis [35]. En el presente estudio, un perro mostró un aumento de la DI con una severa disminución de la abundancia de C. hiranonis el día de la presentación, lo que podría sugerir disbiosis asociada a la EC subclínica [5]. Este perro se presentó 24 meses después con signos gastrointestinales crónicos y gastritis crónica moderada a severa según hallazgos patohistológicos. Por el contrario, en el día 0, todos los demás perros con diarrea aguda tuvieron

C. hiranonis dentro o ligeramente por debajo del intervalo de referencia, y *C. difficile* no se detectó en ninguno de los perros.

Como se observó anteriormente, la administración de metronidazol resultó en una disminución significativa en *C. hiranonis* y un aumento significativo en la DI [19,20,22,36], que aún era detectable 3 semanas después del final del tratamiento en el 33% de los perros. Los resultados indican que la microbiota tiende a volver a la normalidad en la

mayoría de los perros; Sin embargo, el retorno a las condiciones de pretratamiento parece ser individualizado. Este resultado apoya los hallazgos de otros estudios que también revelaron una tendencia individual hacia un retorno después de la retirada del tratamiento con antibióticos [19,37-39]. Por lo tanto, el metronidazol tiene efectos agudos y duraderos sobre la

microbioma intestinal en algunos perros. Aunque todos los perros en el grupo simbiótico tuvieron una DI < 0 en el día 30, el 58% de esos perros aún mostraron cambios menores en el día 30. Por lo tanto, si bien el efecto de la EA en el microbioma intestinal parece ser leve, se deben asumir cambios menores al menos hasta un mes después de un período de EA.

A diferencia de la bacteria beneficiosa *C. hiranonis*, ciertas especies bacterianas, como *E. coli* y *Clostridium perfringens*, se mencionan repetidamente como posibles causas de la enfermedad de Alzheimer. Los resultados del presente estudio revelaron un aumento autolimitado de *C. perfringens* en la EA. Este hallazgo apoya la hipótesis de que el aumento de *C. perfringens* en la EA representa una parte transitoria de la disbiosis intestinal leve [11]. Además, no se observaron diferencias en la abundancia entre el metronidazol y el tratamiento simbiótico a lo largo del tiempo, por lo que no es necesario un tratamiento específico para *C. perfringens*. Del mismo modo, se observó un aumento de la abundancia de *cepas de C. perfringens* que codifican enterotoxinas en la EA; sin embargo, este cambio también parece ser parte de la disbiosis intestinal transitoria [11]. La toxina formadora de poros *NetF* de *C. perfringens* no parece desempeñar un papel importante en perros con EA sin complicaciones, ya que se detectó en solo unos pocos perros el día de la presentación. Estudios previos han demostrado que *NetF* está más fuertemente asociado con AHDS en perros, ya que más del 50% de estos perros albergan estas cepas toxigénicas de *NetF* en la presentación [33,40,41].

El aumento de *E. coli* en el METg puede interpretarse como el resultado de un cambio en el

composición bacteriana debido al efecto del metronidazol contra las bacterias anaerobias, como se demostró anteriormente [19]. Aunque *E. coli* es un habitante normal del intestino y la mayoría de las cepas no son patógenas en la mayoría de los perros, algunas cepas pueden estar involucradas en la patogénesis de enfermedades gastrointestinales, por ejemplo, la colitis ulcerosa histiocítica (HUC) en perros o infecciones extragastrointestinales en el tracto urinario o heridas [42]. Los resultados del presente estudio mostraron que en el grupo simbiótico, la presencia de *E. coli* fue autolimitada, mientras que el metronidazol condujo a un patrón de disbiosis con aumento de *E. coli*.

Este estudio tiene varias limitaciones. En primer lugar, los propietarios proporcionaron tratamientos y dieta en casa. Aunque los propietarios estaban capacitados en la administración de cápsulas, es posible que los tratamientos o la dieta no se administraran en su totalidad. Además, los propios propietarios puntuaron los parámetros del índice CADS. Aunque varias variables pueden evaluarse objetivamente (p. ej., la frecuencia de defecación y la consistencia fecal según la tabla de puntuación fecal de Purina), otras (p. ej., la actividad) son relativamente subjetivas. La impresión clínica también varía en función del tiempo que se pasa con el perro, que difiere entre los propietarios. Una limitación notable de este estudio es la ausencia de un grupo placebo, lo que impide la comparación con un único tratamiento de apoyo. Otra limitación radica en el tamaño relativamente pequeño de la muestra de perros dentro de ambos grupos de tratamiento. Sin embargo, el impacto perceptible del metronidazol en el microbioma intestinal fue evidente y consistente con investigaciones previas. En consecuencia, parece improbable que los resultados hubieran sufrido una alteración sustancial incluso con un grupo de participantes más grande.

5. Conclusiones

En conclusión, los resultados de este ensayo clínico prospectivo y ciego que compara el metronidazol y un simbiótico en perros con EA muestran que el metronidazol causa cambios significativos en el microbioma intestinal, especialmente en *C. hiranonis*. Esto subraya el uso cuidadoso del metronidazol. Además, el aumento de cepas bacterianas específicas, denominadas enteropatógenos potenciales, como *C. perfringens* y *E. coli*, son autolimitadas y se normalizan simultáneamente con la mejoría clínica y sin tratamiento antibiótico. El simbiótico no fue inferior al metronidazol en términos de mejoría clínica y, por lo tanto, debe considerarse como una alternativa ahorradora de antibióticos. Estos agentes pueden influir positivamente en el carácter autolimitado de la EA a través de la modulación beneficiosa del microbioma intestinal y se han utilizado de forma segura durante varios años. Sin embargo,

debido al pequeño número de pacientes y a la falta de un grupo placebo, se necesitan más estudios.

Contribuciones de los autores: Investigación, curación de datos, redacción: preparación del borrador original, redacción, revisión y edición, visualización, administración de proyectos, H.S.; conceptualización, supervisión, redacción: preparación del borrador original, J.S.S.; investigación, A.R.; conceptualización, M.W.; concepción , K.H.; conceptualización, supervisión, redacción: preparación del borrador original, S.U.; Preparación, supervisión, redacción: preparación del borrador original, K.B. Todos los autores han leído y aceptado la versión publicada del manuscrito.

Financiación: Esta investigación fue financiada por NutraPet Systems Deutschland GmbH (Schlaitdorf, Alemania).

Declaración de la Junta de Revisión Institucional: El protocolo del estudio en animales fue aprobado por el comité de ética del Centro de Medicina Veterinaria Clínica de la Universidad Ludwig-Maximilians, Múnich (referencia 205-06-03-2020).

Declaración de consentimiento informado: Se obtuvo el consentimiento informado del titular del sujeto involucrado en el estudio.

Declaración de disponibilidad de datos: Los datos brutos que respaldan las conclusiones de este artículo serán puestos a disposición por los autores que lo soliciten.

Conflictos de intereses: Los autores declaran no tener conflictos de intereses. El financiador no tuvo ningún papel en el diseño del estudio; en la recopilación, análisis o interpretación de los datos; en la redacción del manuscrito; o en la decisión de publicar los resultados.

Referencia

S

- 1. Pugh, C.A.; Bronsvoort, B.M.C.; Händel, I.G.; Querry, D.; Rosa, E.; Veranos, K.M.; Clements, D.N. Tasas de incidencia y análisis de factores de riesgo para los vómitos y la diarrea informados por el propietario en Labrador Retriever: hallazgos de la cohorte Dogslife. *Prev. Vet. Med.* **2017**, *140*, 19–29. [Referencia cruzada] [PubMed (en inglés)]
- 2. Hubbard, K.; Skelly, B.J.; McKelvie, J.; Wood, J.L. Riesgo de vómitos y diarrea en perros. *Vet. Rec.* **2007**, *161*, 755–757. [Referencia cruzada] [PubMed]
- 3. Ellis, C.; Odunayo, A.; Tolbert, M.K. El uso de metronidazol en la diarrea aguda en perros: una revisión narrativa. *Arriba. Companion Anim. Med.* **2023**, 56–57, 100824. [Referencia cruzada] [PubMed (en inglés)]
- 4. Shmalberg, J.; Montalbano, C.; Morelli, G.; Buckley, G.J. Ensayo clínico aleatorizado, doble ciego y controlado con placebo de un probiótico o metronidazol para la diarrea aguda canina. *Frente. Vet. Sci.* **2019**, *6*, 163. [Referencia cruzada] [PubMed (en inglés)]
- 5. Werner, M.; Suchodolski, J.S.; Straubinger, R.K.; Lobo, G.; Steiner, J.M.; Lidbury, J.A.; Neuerer, F.; Hartmann, K.; Unterer, S. Efecto de la amoxicilina-ácido clavulánico en las puntuaciones clínicas, el microbioma intestinal y la resistencia a la amoxicilina *Escherichia coli* en perros con diarrea aguda sin complicaciones. *J. Veterinario Pasante. Med.* **2020**, 34, 1166–1176. [Referencia cruzada] [PubMed (en inglés)]
- 6. Langlois, D.K.; Koenigshof, A.M.; Mani, R. Tratamiento con metronidazol de la diarrea aguda en perros: un ensayo clínico aleatorizado, doble ciego y controlado con placebo. *J. Veterinario Pasante. Med.* **2020**, *34*, 98–104. [Referencia cruzada] [PubMed (en inglés)]
- 7. Pignataro, G.; Di Prinzio, R.; Crisi, P.E.; Bela, B.; Fusaro, I.; Trevisan, C.; De Acetis, L.; Gramenzi, A. Comparación del efecto terapéutico del tratamiento con antibióticos o nutracéuticos sobre la actividad clínica y el microbioma fecal de perros con diarrea aguda. *Animales* **2021**, *11*, 1484. [Referencia cruzada] [PubMed (en inglés)]
- 8. Stavisky, J.; Radford, A.D.; Gaskell, R.; Dawson, S.; Alemán, A.; Parsons, B.; Clegg, S.; Newman, J.; Pinchbeck, G. Un estudio de casos y controles de los factores de riesgo de patógenos y estilo de vida para la diarrea en perros. *Prev. Vet. Med.* **2011**, *99*, 185–192. [Referencia cruzada]
- 9. Saevik, B.K.; Skancke, E.M.; Trangerud, C. Estudio longitudinal sobre diarrea y vómitos en perros jóvenes de cuatro razas grandes.

 **Acta Vet. Scand. 2012, 54, 8. [Referencia cruzada]
- 10. Gómez-Gallego, C.; Junnila, J.; Mannikko, S.; Hameenoja, P.; Valtonen, E.; Salminen, S.; Beasley, S. Un probiótico específico para perros en el tratamiento de la diarrea aguda o intermitente en perros: Un estudio de eficacia doble ciego controlado con placebo. *Veterinario Microbiol.* **2016**, 197, 122–128. [Referencia cruzada]
- 11. Minamoto, Y.; Dhanani, N.; Markel, M.E.; Steiner, J.M.; Suchodolski, J.S. Prevalencia de *Clostridium perfringens*, *Clostridium perfringens* Enterotoxina y disbiosis en muestras fecales de perros con diarrea. *Veterinario Microbiol.* **2014**, 174, 463–473. [Referencia cruzada] [PubMed (en inglés)]
- 12. Luna, B.Y.; Alí, M.S.; Kwon, D.H.; Heo, Y.E.; Hwang, Y.J.; Kim, J.I.; Lee, Y.J.; Yoon, S.S.; Luna, D.C.; Lim, S.K. Antimicrobiano Resistencia en *Escherichia coli* Aislado de perros y gatos sanos en Corea del Sur, 2020-2022. *Antibióticos* **2023**, *13*, 27. [Referencia cruzada] [PubMed (en inglés)]
- 13. Singleton, D.A.; Noble, P.J.M.; Sánchez-Vizcaíno, F.; Dawson, S.; Pinchbeck, G.L.; Williams, Nueva Jersey; Radford, A.D.; Jones, P.H. Prescripción farmacéutica en la diarrea aguda canina: un análisis longitudinal de la historia clínica electrónica de las prácticas veterinarias de primera opinión. *Frente. Vet. Sci.* **2019**, *6*, 218. [Referencia cruzada] [PubMed (en inglés)]
- 14. Alemán, A.J.; Halladay, L.J.; Noble, P.J. Terapia de primera elección para perros que presentan diarrea en la práctica clínica. Vet. Rec.

167, 810–814. [Referencia cruzada]

15. Francillon, W.B.; Winston, J.A.; Schreeg, M.E.; Lilly, M.L.; Parker, V.J.; Rudinsky, A.J. Las prácticas de prescripción de los médicos para el manejo de la diarrea aguda idiopática canina no se basan en la evidencia. *J. Am. Vet. Med. Assoc.* **2023**, 261, 1–9. [Referencia cruzada] [PubMed (en inglés)]

16. Alauzet, C.; Lozniewski, A.; Marchandin, H. Resistencia al metronidazol y genes nim en anaerobios: una revisión. *Anaerobio* **2019**, 55, 40–53. [Referencia cruzada]

- 17. Hernández Ceruelos, A.; Romero-Quezada, L.C.; Ruvalcaba Ledezma, J.C.; López Contreras, L. Usos terapéuticos del metronidazol y sus efectos secundarios: una actualización. *Eur. Rev. Med. Pharmacol. Sci.* **2019**, 23, 397–401. [Referencia cruzada] [PubMed (en inglés)]
- 18. Steagall, P.V.; Pelligand, L.; Page, S.; Granick, J.L.; Allerton, F.; Beczkowski, P.M.; Weese, J.S.; Hrcek, A.K.; Queiroga, F.; Guardabassi, L. La Asociación Mundial de Veterinarios de Pequeños Animales (WSAVA) 2023: Lista de medicamentos esenciales para perros y gatos. *J. Pequeña Anim. Pract.* **2023**, *64*, 731–748. [Referencia cruzada]
- 19. Pilla, R.; Gaschen, F.P.; Barr, J.W.; Olson, E.; Honneffer, J.; Guardia, Columbia Británica; Blake, A.B.; Villanueva, D.; Khattab, M.R.; AlShawaqfeh, M.K.; et al. Efectos del metronidazol sobre el microbioma fecal y el metaboloma en perros sanos. *J. Veterinario Pasante. Med.* **2020**, 34, 1853–1866. [Referencia cruzada]
- 20. Chaitman, J.; Ziese, A.L.; Pilla, R.; Minamoto, Y.; Blake, A.B.; Guardia, Columbia Británica; Isaías, A.; Lidbury, J.A.; Steiner, J.M.; Unterer, S.; et al. Fecal Microbial and Metabolic Profiles in Dogs with Acute Diarrea Receiving Either Fecal Microbiota Transplantation or Oral Metronidazol (Perfiles microbianos y metabólicos fecales en perros con diarrea aguda que reciben trasplante de microbiota fecal o metronidazol oral). Frente. Vet. Sci. 2020, 7, 192. [Referencia cruzada]
- 21. Boekhoud, I.M.; Hornung, B.V.H.; Sevilla, E.; Harmanus, C.; Bos-Sanders, I.; Terveer, E.M.; Bolea, R.; Corver, J.; Kuijper, E.J.; Golpes, W.K. Resistencia al metronidazol mediada por plásmidos en *Clostridioides difficile*. *Nat. Commun.* **2020**, *11*, 598. [Referencia cruzada]
- 22. Scahill, K.; Jessen, L.R.; Prior, C.; Singleton, D.; Foroutan, F.; Ferran, A.A.; Arenas, C.; Bjornvad, C.R.; Lavy, E.; Allerton, F.; et al. Eficacia del tratamiento antimicrobiano y nutracéutico para la diarrea aguda canina: una revisión sistemática y metanálisis para las directrices de la Red Europea para la Optimización de la Terapia Antimicrobiana (ENOVAT). *Vet. J.* **2023**, *303*, 106054. [Referencia cruzada]
- 23. Weingarden, A.R.; Dosa, P.I.; DeWinter, E.; Steer, C.J.; Shaughnessy, M.K.; Johnson, J.R.; Khoruts, A.; Sadowsky, M.J. Los cambios en la composición de los ácidos biliares del colon después del trasplante de microbiota fecal son suficientes para controlar *Clostridium difficile* Germinación y crecimiento. *PLoS UNO* **2016**, *11*, E0147210. [Referencia cruzada]
- 24. Blake, A.B.; Cigarroa, A.; Klein, H.L.; Khattab, M.R.; Keating, T.; Van De Coevering, P.; Lidbury, J.A.; Steiner, J.M.; Sucho dolski, J.S. Etapas de desarrollo de la microbiota, los ácidos biliares y las especies clostridiales en cachorros sanos. *J. Veterinario Pasante. Med.* **2020**, 34, 2345–2356. [Referencia cruzada]
- 25. Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Documento de consenso de expertos: Consenso de la Asociación Científica Internacional de Probióticos y Prebióticos (ISAPP) Declaración sobre la definición y el alcance de los prebióticos. *Nat. Rev. Gastroenterol. Hepatol.* **2017**, *14*, 491–502. [Referencia cruzada]
- 26. Roberfroid, M.; Gibson, G.R.; Hoyles, L.; McCartney, A.L.; Rastall, R.; Rowland, I.; Lobos, D.; Watzl, B.; Szajewska, H.; Stahl, B.; et al. Efectos prebióticos: Beneficios metabólicos y para la salud. *Hno. J. Nutr.* **2010**, 104 (Supl. S2), S1–S63. [Referencia cruzada]
- 27. Rioux, K.P.; Madsen, K.L.; Fedorak, R.N. El papel de la microflora entérica en la enfermedad inflamatoria intestinal: estudios en humanos y animales con probióticos y prebióticos. *Gastroenterol. Clin. N. Am.* **2005**, *34*, 465–482. [Referencia cruzada]
- 28. Bengmark, S. Control bioecológico del tracto gastrointestinal: el papel de la flora y los probióticos y simbióticos suplementados. *Gastroenterol. Clin. N. Am.* **2005**, *34*, 413–436. [Referencia cruzada]
- 29. Mortier, F.; Strohmeyer, K.; Hartmann, K.; Unterer, S. Síndrome de diarrea hemorrágica aguda en perros: 108 casos. *Vet. Rec.* **2015**, 176, 627. [Referencia cruzada]
- 30. AlShawaqfeh, M.K.; Wajid, B.; Minamoto, Y.; Markel, M.; Lidbury, J.A.; Steiner, J.M.; Serpedin, E.; Suchodolski, J.S. Una disbiosis Índice para evaluar los cambios microbianos en muestras fecales de perros con enteropatía inflamatoria crónica. *FEMS Microbiol. Ecol.* **2017**, 93, fix136. [Referencia cruzada]
- 31. Sung, C.H.; Pilla, R.; Chen, C.C.; Ishii, P.E.; Toresson, L.; Allenspach-Jorn, K.; Jergens, A.E.; Summers, S.; Swanson, K.S.; Volk, H.; et al. Correlación entre los ensayos de qPCR dirigida y la secuenciación metagenómica de escopeta de ADN no dirigida para evaluar la microbiota fecal en perros. *Animales* **2023**, *13*, 2597. [Referencia cruzada]
- 32. Li, Q.; Larouche-Lebel, E.; Loughran, K.A.; Huh, T.P.; Suchodolski, J.S.; Oyama, M.A. Disbiosis intestinal y sus asociaciones con el intestino Metabolitos derivados de la microbiota en perros con enfermedad mixomatosa de la válvula mitral. *Sistemas mSystems* **2021**, *6*, E00111-21. [Referencia cruzada]
- 33. Ziese, A.L.; Suchodolski, J.S.; Hartmann, K.; Busch, K.; Anderson, A.; Sarwar, F.; Sindern, N.; Unterer, S. Efecto del tratamiento con probióticos sobre el curso clínico, el microbioma intestinal y el toxigénico *Clostridium perfringens* en perros con diarrea hemorrágica aguda. *PLoS UNO* **2018**, *13*, E0204691. [Referencia cruzada]
- 34. Suchodolski, J.S.; Markel, M.E.; García-Mazcorro, J.F.; Unterer, S.; Heilmann, R.M.; Dowd, S.E.; Kachroo, P.; Ivanov, I.; Minamoto Y.; Dillman, E.M.; et al. El microbioma fecal en perros con diarrea aguda y enfermedad inflamatoria intestinal idiopática. *PLoS UNO* **2012**, 7, E51907. [Referencia cruzada]
- 35. Werner, M.; Ishii, P.E.; Pilla, R.; Lidbury, J.A.; Steiner, J.M.; Busch-Hahn, K.; Unterer, S.; Suchodolski, J.S. Prevalencia de *Clostridioides Difficile* en Heces Caninas y su Asociación con Disbiosis Intestinal. *Animales* **2023**, *13*, 2441. [Referencia cruzada]
- 36. Whittemore, J.C.; Price, J.M.; Moyers, T.; Suchodolski, J.S. Efectos de los simbióticos en el microbioma fecal y los perfiles metabolómicos de perros de investigación sanos a los que se les administraron antibióticos: un ensayo aleatorizado y controlado. Frente. Vet. Sci. 2021, 8, 665713. [Referencia cruzada]
- 37. Gronvold, A.M.; L'Abee-Lund, T.M.; Sorum, H.; Skancke, E.; Yannarell, A.C.; Mackie, R.I. Cambios en la microbiota fecal de perros sanos a los que se les administró amoxicilina. *FEMS Microbiol. Ecol.* **2010**, 71, 313–326. [Referencia cruzada]
- 38. Manchester, A.C.; Webb, C.B.; Blake, A.B.; Sarwar, F.; Lidbury, J.A.; Steiner, J.M.; Suchodolski, J.S. Impacto a largo plazo de la tilosina en la microbiota fecal y los ácidos biliares fecales de perros sanos. *J. Veterinario Pasante. Med.* **2019**, 33, 2605–2617.

Vet. Sci. **2024**, 11, 197 20 of 13

[Referencia cruzada]

39. Igarashi, H.; Maeda, S.; Ohno, K.; Horigome, A.; Odamaki, T.; Tsujimoto, H. Efecto de la administración oral de metronidazol o prednisolona sobre la microbiota fecal en perros. *PLoS UNO* **2014**, *9*, E107909. [Referencia cruzada] [PubMed (en inglés)]

Vet. Sci. 2024, 11, 197 21 of 13

40. Sindern, N.; Suchodolski, J.S.; Leutenegger, C.M.; Mehdizadeh Gohari, I.; Prescott, J.F.; Proksch, A.L.; Mueller, R.S.; Busch, K.; Unterer, S. Prevalencia de *Clostridium perfringens* Genes de las toxinas netE y netF en las heces de perros con diarrea hemorrágica aguda síndrome. *J. Veterinario Pasante. Med.* **2019**, 33, 100–105. [Referencia cruzada]

- 41. Leipig-Rudolph, M.; Busch, K.; Prescott, J.F.; Mehdizadeh Gohari, I.; Leutenegger, C.M.; Hermanns, W.; Lobo, G.; Hartmann K.; Verspohl, J.; Unterer, S. Lesiones intestinales en perros con síndrome de diarrea hemorrágica aguda asociadas con netF positivo *Clostridium perfringens* tipo A. *J. Vet. Diagn. Investig.* **2018**, *30*, 495–503. [Referencia cruzada] [PubMed (en inglés)]
- 42. Marqués, C.; Belas, A.; Franco, A.; Aboim, C.; Gama, L.T.; Pomba, C. Aumento de la resistencia a los antimicrobianos y aparición de los principales linajes clonales internacionales de alto riesgo en perros y gatos con infección del tracto urinario: estudio retrospectivo de 16 años. *J. Antimicrobiano. Quimiotera.* **2018**, 73, 377–384. [Referencia cruzada] [PubMed (en inglés)]

Descargo de responsabilidad/Nota del editor: Las declaraciones, opiniones y datos contenidos en todas las publicaciones son únicamente los de los autores y colaboradores individuales y no de MDPI y/o los editores. MDPI y/o el/los editor(es) renuncian a la responsabilidad por cualquier daño a personas o propiedad que resulte de cualquier idea, método, instrucción o producto al que se haga referencia en el contenido.